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We describe and evaluate a new statistical generativemodel of functional magnetic resonance imaging (fMRI)
data. The model, topographic latent source analysis (TLSA), assumes that fMRI images are generated by a
covariate-dependent superposition of latent sources. These sources are defined in terms of basis functions
over space. The number of parameters in the model does not depend on the number of voxels, enabling a
parsimonious description of activity patterns that avoids many of the pitfalls of traditional voxel-based
approaches. We develop a multi-subject extension where latent sources at the subject-level are perturbations
of a group-level template. We evaluate TLSA according to prediction, reconstruction and reproducibility. We
show that it compares favorably to a Naive Bayes model while using fewer parameters. We also describe a
hypothesis testing framework that can be used to identify significant latent sources.
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Introduction

Most current approaches to functional magnetic resonance
imaging (fMRI) take the basic spatial unit of analysis to be the
voxel, and attempt to learn a set of parameters characterizing the
voxel's response to a set of covariates (e.g., experimental manipula-
tions). Traditionally, each voxel's response is assumed to be
independent of all the other voxels, and is modeled as a linear
function of the covariates convolved with a hemodynamic response
function (Friston et al., 1994). Although this approach, which we refer
to as the mass-univariate general linear model (MU-GLM), has been
productive, it suffers from two shortcomings. First, the assumption
that responses of voxels are independent of one another is rarely true,
necessitating post-hoc correction procedures to account for these
dependencies (Friston et al., 1996). Second, and more fundamentally,
modeling neural responses at the voxel level does not enable direct
inferences about what are arguably the variables of real interest, the
responses of the underlying neuroanatomical regions. To sidestep this
issue, regionally specific activations are typically extracted from the
voxel-specific parameters by looking for spatially extended excur-
sions from a null distribution (Worsley et al., 1996; Nichols and
Holmes, 2002).
More recently, two modeling trends have emerged that attempt to
move beyond the mass-univariate GLM towards more realistic spatial
assumptions. The first retains the GLM, but assumes that the
parameters vary smoothly over voxels within a spatial neighborhood.
The smoothness assumption is enforced in a Bayesian framework by
encoding spatial dependencies between voxels in the prior (Woolrich
et al., 2004; Penny et al., 2005; Harrison et al., 2007; Flandin and
Penny, 2007; Bowman et al., 2008). We refer to this approach as the
spatially regularized GLM (SR-GLM). The second trend, multivariate
pattern analysis (MVPA), attempts to find a (possibly non-linear)
mapping between the full ensemble of voxel patterns and the
covariates, without necessarily assuming independence (or local
spatial dependence) between voxels (Norman et al., 2006; Haynes
and Rees, 2006; O'Toole et al., 2007). MVPA is motivated by the idea
that the neural response is distributed over multiple voxels (e.g.,
Haxby et al., 2001), and hence avoids strong assumptions about
spatial dependencies.

Each captures a different aspect of the spatial statistics of fMRI:
While the SR-GLM captures local spatial dependencies, MVPA can
potentially capture long-range dependencies across brain regions or
distributed patterns within a brain region. This leads to a natural
question: Can we devise a model that captures both aspects? To this
end, this paper introduces a new spatial model of fMRI data that
navigates a middle road between local and distributed assumptions.
On the one hand, we assume that the neural response within a local
region of the brain is spatially homogenous. On the other hand, we
assume that the covariates evoke distributed patterns across multiple
locally homogenous responses. The distributed patterns inferred by
the model are represented parsimoniously by a set of latent sources:
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Fig. 1. Generative model. (A) Matrix factorization view of TLSA. (B) A schematic
illustrating how basis images (right) combine to form the class-conditional activation
map for a single class (left). Plus and minus symbols indicate positive and negative
weights, respectively.
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functions defined over continuous space that concentrates their
energy in local regions. The observed fMRI data are modeled by a
covariate-dependent superposition of these latent sources sampled at
discrete voxel locations. Because the latent sources are topographi-
cally-structured spatial functions, we call this model topographic
latent source analysis (TLSA). The purpose of TLSA is to address the
goals of both traditional GLM analyses (e.g., functional localization)
and MVPA analyses (e.g., prediction, reconstruction).

Employing spatial functions has several advantages. First, it
dramatically reduces the number of parameters that must be learned;
unlike other models (e.g., Woolrich et al., 2004; Penny et al., 2005;
Bowman et al., 2008), the number of parameters in TLSA does not
scale with the number of voxels. An fMRI dataset for a single subject
can have anywhere from 30,000 to 100,000 voxels but only on the
order of 1000 observations; this makes voxel-based models highly
prone to over-fitting, resulting in poor generalization to new data. By
avoiding explicit dependence on the number of voxels, TLSA may be
less prone to over-fitting. A second advantage of employing spatial
functions is that interpolation is easy and natural: one simply samples
the spatial functions at missing locations. This may be useful in
settings where data are partially corrupted. A third advantage is that
spatial functions may help relate data across subjects. By setting up a
hierarchical model in which sources for each subject are spatially
transformed versions of a group-level template, TLSA is able to
account for both shared and idiosyncratic structure across subjects
(see Xu et al., 2009; Kim et al., 2010, for related work), although
preprocessing steps like affine coregistration are still important. TLSA
may be a useful functionally based supplement to standard anatom-
ically based preprocessing methods.

To compare TLSA to other models, we have developed metrics that
focus on different aspects of the data. The most common evaluation
metric for MVPA models is the accuracy with which held-out
covariates are predicted from their associated neural activity. In
addition to covariate prediction, we also examine the prediction of
neural activity from its associated covariates (reconstruction) and the
reproducibility of the learned parameters across different subsets of
the data. Reconstruction error describes how well the model captures
the overall statistical structure of the neural data; some latent sources
may not discriminate between covariates but nonetheless capture
statistical structure across covariates. Finally, if researchers intend to
interpret parameter estimates, then measuring the reproducibility of
parameter estimates across exchangable subsets of data is important.
Low levels of reproducibility indicate that there is degeneracy in the
model parameterization, such that identical predictions are produced
by very different parameter settings (LaConte et al., 2003; Chen et al.,
2006).

To make contact with traditional GLM-based analyses, we also
describe a hypothesis testing framework for calculating posterior p-
values (i.e., the probability of a hypothesis under the posterior). This
framework is similar to the one described by Friston et al. (2002). The
main difference is that the hypotheses in TLSA concern latent sources
rather than voxels.

Methods

In this section, we formally describe the model and inference
algorithm. We then describe how the model can be used within a
hypothesis testing framework. Finally, we define several evaluation
metrics which we use to compare our model against alternatives.

Terminology

We first present the model for a single subject, shown schemat-
ically in Fig. 1. In the next section we elaborate this model
hierarchically to multiple subjects. Let C be the number of covariates,
N be the number of observations, K be the number of latent sources,
and V be the number of voxels. The model consists of the following
variables (see Fig. 1A for a representation in terms of matrix
factorization):

• X :N×C design matrix containing each covariate's time series.
Covariates can be continuous or discrete. We shall sometimes
refer to discrete covariates as “classes.” Note that the design matrix
can accommodate all the standard embellishments used in GLM
analyses, such as haemodynamic convolution, temporal filtering,
and nuisance regressors (Friston et al., 1994).

• W :C×K real-valued weight matrix encoding how each covariate
loads on each source. The weights play the same role as coefficients
in traditional voxel-based GLM analyses, expressing howmuch each
source (rather than each voxel) is activated in response to changes
in each covariate.

• F :K×V non-negative real-valued basis image matrix encoding the
canonical spatial pattern (over voxels) associated with each latent
source. Each basis image fk is a deterministic function of a set of
parametersωk (location andwidth of each source; see next section).

• Y :N×V real-valued fMRI data matrix, the pattern of activity at each
observation.

• R :V×D real-valued location matrix, specifying, in D-dimensional
coordinates (usually D=3), the location of each voxel. In order to
specify a uniform spatial prior on the source locations (see next
section), we normalize the image dimensions to the [0, 1] interval,
so that rv∈ [0, 1]D.

Generative model

We assume the observed fMRI data arise from a covariate-
dependent superposition of latent sources (Fig. 1B):

ynv = ∑
c
xnc ∑

k
wckfkv + �nv; ð1Þ

where �nv~N(0, τ−1). This model can be written in matrix notation:

Y = XWF + �: ð2Þ

We construct the basis image fk associated with latent source k
using a spatial basis function with parameters ωk. While a variety of
basis functions are acceptable, for our applications we use a spherical
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radial basis function with parameters ωk={μk, λk}, where μk∈ [0, 1]D

is a source location and λk
−1 is a spatial width:

fkv = exp −λk ∑
D

d=1
rvd−μkdð Þ2

( )
: ð3Þ

The source location μk specifies the region of the brain in which
source k concentrates its energy, and the width λk

−1 specifies its
spatial extent.

We place the following prior distributions on the parameters:

wckeN 0;σ 2
� �

ð4Þ

μkdeBeta 1;1ð Þ ð5Þ

λkeGamma ρ;κð Þ: ð6Þ

While these are the priors that we use in the study, we note that
TLSA can accommodate other priors (i.e., the inference algorithm we
present in the next section does not require conjugate priors). In
Section Analyses of synthetic data, we use synthetic data to assess the
sensitivity to choice of prior.

We now describe the hierarchical extension of this model. The
basic idea behind hierarchical models is that parameters are coupled
together by virtue of being drawn from a common distribution; this
allows sharing of structure between different parameters while still
allowing between-parameter variability (see Gelman and Hill, 2007,
for a general introduction to hierarchical modeling). In hierarchical
TLSA, each subject's parameters θs={Ws, ωs} are assumed to arise
from Gaussian perturbations of the group-level parameters θ0={W0,
ω0},

ws
ckeN w0

ck;β
� �

ð7Þ

μs
kdeN μ0

kd; ζ
� �

ð8Þ

λs
keN λ0

k ;ν
� �

: ð9Þ

We truncate the Gaussians for μ∈ [0, 1] and λ∈(0, ∞) to ensure
these variables stay within the appropriate range. We give the group-
level parameters θ0 the same priors as described above for the non-
hierarchical version (Eqs. (4)–(6)). The hierarchical model makes the
assumption that sources are shared across subjects, but their location,
width and loading vector can vary from a group-level template. In this
way, statistical structure is shared across subjects while allowing for
individual differences. In the remainder of the paper, we will refer to
the hierarchical and non-hierarchical versions of TLSA as “TLSA-H”
and “TLSA-NH,” respectively.

Inference

Our goal is to compute the posterior over the hidden variables θ=
{W0 : S, ω0 : S} given the observed variables X and Y:

p θ jX;Yð Þ = p Y jX; θð Þp θð Þ
p Y jXð Þ : ð10Þ

As for many complex Bayesian models, the normalizing constant
(marginal likelihood) is intractable to compute. We therefore
approximate the posterior with a set of L samples generated by
Markov Chain Monte Carlo (MCMC; Robert and Casella, 2004). In
particular, we apply the Metropolis algorithm (Metropolis and Ulam,
1949) to obtain samples from the posterior. Letting θ(l) denote the
current state of theMarkov chain, theMetropolis algorithm iteratively
proposes a new value θ′~q(a(l)) and accepts this proposal with
probability

p θ lð Þ = θ′
� �

= min 1;
p Y jX; θ′ð Þp θ′ð Þ

p Y jX; θ lð Þ� �
p θ lð Þ� �( )

; ð11Þ

where q(θ ;θ(l))=q(θ(l) ;θ). If the proposal is rejected, then θ(l)=θ(l−1).
After a burn-in period, this Markov chain will reach its stationary
distribution, which is the posterior (Eq. (10)). Using these samples, the
posterior is approximated by:

p θ = θ′ jX;Y� �
≈1

L
∑
L

l=1
δ θ lð Þ

; θ′
h i

; ð12Þ

where δ[⋅, ⋅] is 1 if its arguments are equal and 0 otherwise.
The MCMC algorithm converges when the Markov chain reaches

its stationary distribution. One pitfall of MCMC methods is the
existence of local modes in the posterior, which can cause the chain to
converge slowly. As is common with MCMC methods (Robert and
Casella, 2004), we attempted to improve convergence time by
dividing θ into a set of coordinates, each with its own proposal
distribution, and update these iteratively. We used Gaussian proposal
distributions for wck

s and μks , and Gamma distributions for λk
s; in all

cases, the distributions were centered on the current sample. We
tuned the parameters of these proposal distributions to achieve
acceptance rates greater than 15 percent, although we did compre-
hensively explore the parameter space. Specifically, we used a
proposal variance of 0.2 for the weight updates, 0.1 for the source
center updates, and 0.1 for the source width updates. For good
initialization of the source centers, we used the mean activation maps
for all conditions to find task-relevant locations, and seeded the
source centers by randomly drawing from these locations. For a
32×32 image with 100 datapoints, TLSA-NH takes 84 s to perform
1000 iterations on a 64-bit, ?2.53 Ghz dual-core processor.

A hypothesis testing framework

Once TLSA has been fit to data, we want to test specific hypotheses
about the parameter estimates. For example, we may want to test the
hypothesis that the loading of source k on class c is greater than 0. The
approximate posterior produced by MCMC allows us to easily
calculate this probability by counting the proportion of samples for
whichwckN0. More generally, letH denote a hypothesis and IH θð Þ be a
binary indicator that is equal to 1 if H is true given θ and 0 otherwise.
The posterior probability that H is true is:

∫θIH θð Þp θ jX;Yð Þdθ≈1
L
∑
L

l=1
IH θ lð Þ� �

: ð13Þ

The resulting “posterior p-value” quantifies the degree of belief in
H after observing the data (see Friston et al., 2002, for a comparison
between classical and Bayesian hypothesis testing). With TLSA, the
hypotheses are typically about latent sources rather than voxels. This
allows the researcher to investigate and reason about spatially
extended activations directly, without requiring post-hoc procedures
such as cluster-thresholding and correction for multiple comparisons
(Friston et al., 1996).

One hypothesis class that is relevant from the perspective of
traditional fMRI analysis is the linear contrast, ηwk, where η is a 1×C
vector of contrast coefficients and w is the kth column of W (which
could be either subject- or group-level weights). Usually the contrast
vector isolates the difference between two experimental conditions
(i.e., two classes in the multi-class setting), and the hypothesis is
whether the new random defined by the contrast is greater (or less
than) γ (e.g., Friston et al., 1994). To construct model-based
thresholded contrast maps, we first calculate P(wik−wjkNγ) for
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Fig. 2. Class-conditional maps for synthetic data. (Top) Simulated class-conditional
maps for two classes. (Bottom) TLSA-NH reconstructions of the class-conditional maps
(see text for details).
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each source separately, where γ is an activation threshold, and i and j
represent the two classes we are interested in contrasting. We then
remove those sources for which the probability is below some
confidence threshold; following Friston and Penny (2003), we
recommend a probability threshold of 0.95, which we use in the
experiments reported below (with γ=0). Finally, we calculate the
model-based contrast map by subtracting the class-conditional maps
using only the sources that have survived thresholding.

Because some sources will inevitably be used to capture noise in
the data, an important task is to identify which sources carry “signal”
and which sources carry “noise.” The Bayesian hypothesis testing
machinery can be used for this purpose: Weights for noise sources
will tend to have low probability of deviating from zero.

Note that Bayesian hypothesis tests are fundamentally different
from classical (frequentist) hypothesis tests based on p-values
(Wagenmakers and Grünwald, 2006). The posterior probability of a
hypothesis represents the researcher's subjective degree of belief in
the hypothesis; this degree of belief is not necessarily well-calibrated
with the true probability, and depends on the specification of priors.
As such, researchers should not treat the posterior probability
threshold according to the same standards as p-values: a 0.95
posterior probability threshold is not related meaningfully to a 0.05
p-value threshold.

Comparison against other models

As a baseline against which to compare TLSA, we will study
Gaussian Naive Bayes (GNB) and multinomial logistic regression (LR)
models on data pre-processed by singular value decomposition (SVD)
or independent components analysis (ICA) with varying numbers of
components. These models have been shown to achieve good
performance when applied to several previous fMRI datasets
(McKeown and Sejnowski, 1998; Svensén et al., 2002; Mitchell et
al., 2004; Hu et al., 2005; Chen et al., 2006). Details of thesemodels are
provided in the Appendix. We use the notation “SVD-GNB” to denote
GNB operating on latent components derived from SVD (and likewise
for other combinations, e.g., SVD-LR, ICA-GNB, etc.).

We emphasize that only our method, and not the alternatives to
which we compare, can make inferences about latent sources. The
other methods are fundamentally voxel-based. Thus, for researchers
interested in making inferences about the latent spatial structure of
their data, our method offers a unique advantage. The purpose of the
quantitative comparisons is to show that our method performs
comparably on other tasks to which the alternative model is
commonly applied.

Evaluation metrics

We evaluate the models described above according to four
different metrics. Each of these metrics is applied to held-out data
using a cross-validation procedure, where one run (from each
subject) is left out of the training set and used as an independent
test set.

• Predictive probability: Given a test set of activity patterns Y, how
well can the model predictX? We measure predictive performance
by calculating the posterior predictive probability of the test
covariates under the model. In other words, we calculate how likely
the true covariates are under the model, using the maximum a
posteriori (MAP) parameter estimates. This metric is more sensitive
than accuracy, since it does not apply a hard threshold to the
model's predictions.

• Reconstruction error: Given a test set of covariates X, what is the
mean-squared reconstruction error (MSE) for predicting Y?

• Class-conditional reproducibility: How similar are the inferred class-
conditional densities across different subsets of the data? We
measured this by calculating the average similarity between the
class-conditional mean images (backprojecting the SVD-based
parameter estimates into the original voxel space) for pairs of
cross-validation folds, where similarity is measured by the corre-
lation between the image vectors. This metric measures how well a
model captures the global pattern evoked by a class.

• Component reproducibility: How similar are the inferred basis
images (components) across different subsets of the data? We
measured this by greedily matching components across cross-
validation folds (using a Pearson correlation metric) and then
calculating component-wise correlation for pairs of cross-validation
folds.

Results

In this section, we present analyses of synthetic and real fMRI data.

Analyses of synthetic data

We first evaluated TLSA on synthetic data, consisting of 6 sources
and 2 classes (blocked design, although this property is immaterial,
since all the models we consider assume exchangeable datapoints).
The synthetic dataset (N=40) was defined on a 32×32 pixel image
and corrupted by zero-mean Gaussian noise with σy=0.1. The
ground-truth class-conditional maps are shown in Fig. 2. These
maps represent the expected activation pattern for each class:

E ynv jxnc = 1½ � = xnc ∑
K

k=1
wckfkv; ð14Þ

where each source surface was drawn from a zero-mean Gaussian
process with Matérn covariance function (see (Rasmussen and
Williams, 2006)). While generally smooth, these surfaces do not
assume a radial basis function shape, and can generally be quite
complex. Fitting TLSA to these data will help understand the model's
performance the underlying generative process is misspecified. We fit
TLSA-NH to the data with K=40, κ=100, τ=1, σ=0.1, running the
MCMC algorithm for 5000 iterations. The fitted model appears to
capture the structure of the class-conditional maps (Fig. 2), with the
extra sources allowing the model to compensate for the misspecifica-
tion of the prior.

Next, we examined how the results changed with number of
sources (K). Splitting the dataset into a training and test set, we found
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that held-out predictive probability increases with K for the synthetic
dataset, peaking at K=20 and declining thereafter (Fig. 3A). This
suggests that overestimating the number of source in the data may be
useful for overcoming model misspecification, but using too many
sources can result in over-fitting. Thus, there is an “optimal” number
of sources that will vary from dataset to dataset.

In order to assess the sensitivity of these results to hyperparameter
settings, we varied the weight prior variance σ2 and source width
parameter κ, re-estimating the held-out predictive probability for
each setting. We show the resulting performance curves in Fig. 3B.
Our results demonstrate that the held-out predictive probability is
relatively constant over a wide range of different settings of κwhen σy

is small, but declines as a function of κ when σ is large. It is thus
generally better to use large sources (small κ), since this appears to be
more robust to changes in the weight prior.

We next investigated how the model performs as the noisiness of
the data increases. We found that reconstruction performance
maintains superiority over GNB across a range of noise levels
(Fig. 3C). One explanation for this finding is that GNB is estimating
many more parameters than TLSA, and as a consequence can more
easily fit noise, leading to poor generalization performance.

A related question is what TLSA does when there is only noise.
More specifically, how often will TLSA erroneously infer a significant
effect when none exists? To answer this question, we repeatedly fit
TLSA-NHwith a varying numbers of sources to data consisting entirely
of zero-mean, unit variance Gaussian noise. For each repetition and
each sample we then calculated the linear contrast between the
weights of the two classes. A contrast for a source was deemed
significant if the proportion of sample-contrasts greater or less than
0 exceeded a variable posterior probability threshold. As shown in
Fig. 5, the number of false positives becomes vanishingly small as the
probability threshold increases. Furthermore, the difference in the
number of false positives between models with different values of K
also vanishes with an increasing probability threshold. Thus, TLSA
appears to sensitively control the number of false positives in a
manner that is relatively independent of K for sufficiently large
probability thresholds.

Another question regarding the training of our model is conver-
gence of the MCMC sampler. While assessing convergence to the
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stationary distribution (i.e., the posterior) is notoriously difficult, we
can evaluate the more modest goal of convergence to a local mode.
Fig. 3D shows the trace of the joint log-likelihood as a function of
iteration for a single MCMC run. The trace plot demonstrates
convergence to a local mode after approximately 200 iterations.

Finally, we investigated how the performance of the hierarchical
model changes as a function of source dispersion ζ. This parameter
dictates how similar spatial activations are across subjects. In order to
systematically manipulate source dispersion, we used radially-shaped
sources, as shown in Fig. 4A. We found that performance of TLSA-H
degrades as ζ increases, but is still better than GNB (Fig. 4B). To get a
sense of what these values of ζ mean, for ζ=0.5 roughly half the
sources centers will be displaced by more than one voxel. Taken
together, these results indicate that the model is robust to a variety of
violations of the generative assumptions.

Real datasets

We next fit the models described above to two fMRI datasets. The
first, collected byMcDuff et al. (2009), involved subjects studying lists
of nouns.Wewill refer to this dataset as “ROSM” (retrieval orientation
and source memory). On each trial, subjects were presented with a
noun and asked to perform one of 3 encoding tasks (“artist,”
“function” or “read”; see McDuff et al., 2009, for details). We treat
each of these encoding tasks as a separate class; thus, xnc=1 if the
subject was performing task c at time n. Data were not coregistered
prior to analysis. Each subject's data (324 trials per subject, divided
into 6 runs) were sub-sampled in all 3 image planes (to ease the
computational expense of model-fitting), yielding 5000–6000 voxels
for each subject. The data were then z-scored within each run.

The second dataset (“TB,” or tools/buildings), collected by Mason
and Just (unpublished), involved subjects viewing words for 3
seconds, followed by a blank screen for 3 seconds. Each word was
either the name of a type of tool or of a type of building(i.e., therewere
2 classes), and the subject's task was to think about the word and its
properties while it was displayed, and to not think about anything
during the blank screen. There were 7 different exemplars of each of
the two categories and 6 blocks. All 14 exemplars were shown
without repetition in each block, for a total of 84 trials per subject. An
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fMRI volume was collected every second, using 3×3×5mm voxels in a
64×64×16 grid. Voxels outside of cortex were filtered out using an
anatomical mask, yielding 15000–20000 voxels for each subject. fMRI
images 4, 5, 6 and 7 seconds after stimulus onset in each trial were
averaged together into a single example, which was then z-scored
across voxels (within runs). Datawere not coregisteredprior to analysis.
For the SVD-based analyses, we truncated K at 60, since the singular
values for larger Kwill be close to 0 (due to the small number of trials).

For both datasets, we ran the MCMC sampler for 5000 iterations
with different values of K (the number of latent sources), using the
highest-scoring sample (the maximum a posteriori estimate) for
visualization and prediction purposes. We found that parameter
estimates stabilized after about 2000 iterations. We used the
following hyperparameter settings: τ=1, σ=0.1, σ0=1, ζ=0.1,
ρ=1, κ=400, ν=10.

Fig. 6 (left) shows example class-conditional maps for a single
subject in the ROSM dataset with K=80. For comparison, the right
column of Fig. 6 shows the map of ordinary least-squares estimates,
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Fig. 5. False positives under noise conditions. Each curve corresponds to a model with a
different number of sources (K). A false positive occurs when a weight contrast is
deemed significant for a source at a particular probability threshold, with γ=0. See text
for details.
which in this case are equivalent to the class-conditional means for
each voxel.
Prediction, reconstruction and reproducibility

Predictive performance of the models is shown in Fig. 7. We found
that the ICA preprocessing produced inferior performance compared
to SVD preprocessing across all our metrics (and for all tested values
of K); we therefore exclude this model from our figures and
discussion. All 4 remaining models perform better than chance (1/3
for the ROSM dataset, 1/2 for the TB dataset). Generally speaking, the
SVD-GNB model performed most poorly, and, for KN60, the two
versions of TLSA performed comparably to one another. SVD-LR
performed much better than the other models on the ROSM dataset,
but was inferior to TLSA on the TB dataset for KN60.

Reconstruction performance is shown in Fig. 8. Note that this
metric, since it operates only over the latent components, is identical
for SVD-LR and SVD-GNB (we therefore denote these models together
as “SVD”). Over a wide range of K values, the reconstruction
performance of TLSA is superior to that of SVD. However, the
hierarchical and non-hierarchical versions of TLSA are indistinguish-
able in terms of reconstruction performance.

Reproducibility performance is shown in Figs. 9 and 10. Note that
component reproducibility (like the reconstruction metric) depends
only on the latent components, and hence is identical for SVD-LR and
SVD-GNB. For the ROSM dataset, both variants of TLSA outperformed
SVD for both reproducibility metrics, although there was no clear
pattern of superiority for a single variant. For the TB datset, the results
were mixed. For class-conditional reproducibility, TLSA outperformed
SVD-GNB, but for component reproducibility the opposite patternwas
obtained. There was a trend for SVD's component reproducibility to
decrease with increasing K, while TLSA's performance tended to
increase with K. There also is a dip in the performance of TLSA-NH for
intermediate values of K on the TB dataset. This appears to be a
reliable effect, in that we found it using multiple chains with different
initializations; we do not have an explanation for this effect.

To statistically assess the difference in performance between the
models, we computed paired-sample t-tests between models for each
setting of K. We concentrate on comparing TLSA with SVD-GNB, since
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it is not possible to calculate class-conditional reproducibility or
reconstruction metrics for LR.1 Fig. 11 shows the t-statistics for
comparisons of SVD-GNB and TLSA-NH with TLSA on our prediction
and reconstruction metrics; horizontal lines denote the 0.05 p-value
threshold for significance. This threshold was Bonferroni-corrected to
take into account our multiple-testing procedure (20 tests per metric
for ROSM, 16 for TB). Thus, 0 represents indistinguishable perfor-
mance compared to TLSA, and positive t-values indicate superior
performance of the model relative to TLSA.

Fig. 11 indicates that most of these comparisons are non-
significant, except for reconstruction error on the TB dataset, for
which SVD performs much worse than TLSA. Thus, the pattern of
prediction and reconstruction results suggests thatboth variants of
TLSA are competitive with, if not superior to, SVD-GNB.

Fig. 12 shows analogous t-statistics for the reproducibility metrics.
For the ROSM dataset, TLSA is generally superior to SVD on both
metrics. For the TB dataset, SVD is superior to TLSA for small K but not
for large K on component reproducibility; there does not appear to be
a significant advantage for either model on class-conditional
reproducibility. As with the other metrics, TLSA does not display a
decisive advantage over TLSA-NH.

Hypothesis testing

To illustrate the Bayesian hypothesis testing framework, we
examined the contrast between two classes (class 1–class 2) for a
single subject in the ROSM dataset. The empirical contrast (difference
between class means) is shown for different slices in the top row of
Fig. 13. The model-based contrast maps are shown in the middle row,
calculated according to the procedure described in Section A
hypothesis-testing framework. The bottom row of Fig. 13 shows the
contrast resulting from spatially regularized voxel-wise parameter
estimates (Penny et al., 2005). Spatial regularization is induced by a
Gaussian Markov random field prior on the parameters. The maps
were thresholded according to a 0.95 posterior probability threshold,
such that they are comparable to the thresholded TLSA contrast maps.
These results illustrate that the posterior probability maps produced
by TLSA are comparable to what one would obtained using a spatially
regularized GLM analysis, and can be interpreted in a similar way. We
emphasize that inferential statistics based on these maps represent
1 Component reproducibility will be identical for LR and GNB since it relies only on
the SVD components, which are common to both models.
inferences about spatially extended latent sources rather than voxels,
which means that additional operations (e.g., cluster-size threshold-
ing) are unnecessary.

Discussion

In this paper, we presented TLSA, a new model of fMRI spatial
statistics in which neural activity arises from covariate-dependent
superposition of latent sources.We evaluated this model using several
metrics and compared it to Naive Bayes and logistic regression
models, demonstrating that TLSA can achieve good levels of
performance. We also presented a Bayesian hypothesis testing
framework that allows researchers to test a wide variety of
hypotheses (e.g., linear contrasts) about the latent sources inferred
from the data. The advantage of working with latent sources rather
than voxel-specific parameters is that the latent sources have intrinsic
spatial extent and are thus suitable for capturing spatial patterns
without the need for post-hoc corrections like cluster-size thresholds.

TLSA addresses several problems in fMRI analysis, including spatial
alignment and smoothing, as well as providing a method for
multivariate analysis. We showed that TLSA is competitive with
widely-used generative (GNB) and discriminative (LR) models
according to several different performance metrics. For prediction
and reconstruction tasks TLSA displays either equivalent or better
performance compared to GNB, and TLSA outperforms GNB in
reproducibility over a range of values of K. These results provide
evidence for the usefulness of the latent sources discovered by TLSA;
the hypothesis testing framework allows us to move beyond simple
prediction and reconstruction to answering scientific questions about
the latent sources.

We did not observe any reliable differences between the
performance of TLSA and TLSA-NH according to most of our
performance metrics. One possible explanation for this finding is
that there was insufficient spatial homogeneity across subjects in the
datasets we analyzed to provide the hierarchical model with an
advantage over its non-hierarchical counterpart. Another possibility is
that the sampler was stuck in local modes, corresponding to the non-
hierarchical solution.

Related work

In addition to the SR-GLM andMVPA approaches mentioned in the
Introduction, there exist a number of other approaches to spatial
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modeling of brain activations. Kiebel et al. (2000) constructed
anatomically informed basis functions by segmenting the gray matter
into a vertex-based surface with a Gaussian spatial interpolant
(essentially identical to the spatial basis functions we used). They
then optimized a set of regression coefficients for these basis functions.
Themathematical form of theirmodel is similar to ours, butwe infer the
parameters of the basis functions from functional data, whereas they
infer them from anatomical data. This allows us to infer fewer numbers
of basis functions, since the number of functionally relevant areas of the
brain tend to be much fewer than number of vertices required to
accuratelymodel the anatomical surface (Kiebel et al. report 130,000 as
a typical number). An interesting problem for future work is how to
incorporate anatomical information into TLSA.
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A different approach was taken by Lindeberg et al. (1999), who
used the concept of a “scale-space primal sketch” from computer
vision (Lindeberg, 1994). A signal's scale-space representation is the
original signal convolved with a Gaussian kernel over a spectrum of
variances. Thus, coarser spatial scales are defined by convolutions
with higher-variance Gaussians. The scale-space primal sketch
represents a spatially-varying signal (e.g., a brain volume) as a
multi-scale tree whose leaves are blobs (extended local extrema).
Lindeberg et al. (1999) present an algorithm for extracting these blobs
from brain activation data. Remarkably, this algorithm has almost no
free parameters. The authors do not provide a statistical framework
for assessing the significance of blobs. TLSA does not address multi-
scale spatial structure. It is an avenue for future research.
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presents the class-conditional reproducibility score.
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Another line of work has focused on modeling the map of
summary statistics produced by mass-univariate GLM analyses (Xu
et al., 2009; Kim et al., 2010). To account for spatial structure in
these maps, each summary statistic is assumed to arise from a
mixture of Gaussians, where the mean of each mixture component
represent the spatial location of a “blob” (akin to latent sources in
TLSA). The mixture formulation allows the marginal distribution of
spatial activations to be non-Gaussian. The work of Kim et al. (2010)
places a nonparametric prior over the mixture components,
allowing the number of components to be learned from the data,
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whereas Xu et al. (2009) use reversible-jump MCMC to infer the
model dimensionality. Although this work is not directly compara-
ble to ours (since we are modeling the entire fMRI timeseries,
whereas they are modeling summary statistics), the idea of using
latent spatial components is in the same spirit. One technical
difference is that our model is inherently a factor model, in that we
allow multiple sources to contribute to each voxel, whereas the
work of Xu et al. (2009) and Kim et al. (2010) attempt to infer a
single component for each voxel. One reason to think that a factor
model is more appropriate is the observation that a single brain
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region may be part of several functional networks (e.g., LaBar et al.,
1999).

Future directions

There are a number of limitations of TLSA and our inference
algorithm. First, it may be desirable to relax some of the assumptions of
the generative model. In particular, we assume that all within-class
heterogeneity (in the discrete covariate case) is due to random
observation noise, an assumption that is unlikely to be true. For
example, theremay be systematic changes in brain activity that are due
to unmodeled causes, such as attention. The SVD-based methods are
able to at least partly model this source of variance. One possibility is to
Fig. 13. Example hypothesis test. (Top) Empirical contrast (difference between class means)
TLSA contrast map thresholded at posterior probability greater than 0.95. (Bottom) Spatiall
change the observation noise model to be a Student t-distribution,
which would arise in the case where the weights were allowed to vary
across observations according to a Gaussian distribution. Alternatively,
we could model observation-specific weights with a mixture of
Gaussians. Another limitation of the generativemodel is that it assumes
the number of latent sources (K) to be known. This problem can be
addressed using cross-validation to select K. Alternatively, we could
address the problem nonparametrically by placing a hierarchical
Dirichlet process prior over the latent sources (Teh et al., 2006), which
would discover the number of sources automatically, while allowing
sharing of sources across subjects.

On the algorithmic front, our MCMC sampler suffers from long
computation times. Although more efficient sampling algorithms are
for class 2 versus class 1. Each column represents a slice of the contrast map. (Middle)
y regularized GLM-based contrast map, thresholded at 0.95 posterior probability.
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possible (e.g., Hybrid Monte Carlo; Duane et al., 1987), we have found
that these do not substantially improve speed or convergence for
these datasets. An alternative is to use variational methods (Jordan et
al., 1999), which convert the inference problem into an optimization
problem by searching for the approximate posterior within some
constrained family of densities that best approximates the true
posterior. Variational methods have been shown to achieve excellent
performance with much less computational overhead compared to
MCMC methods (Bishop, 2006).

Although there are many avenues for future improvement, the model
developed in thispaper showspromiseasauseful addition to theanalytical
toolbox for fMRI data. The flexibility of the probabilistic modeling
framework will allow us to easily extend and refine these preliminary
explorations, as well as integrate neuroimaging data with other
information, such as behavior and computational models of cognition.
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Appendix A. Alternative models

Singular value decomposition

SVD decomposes the neural data into a set of 3 matrices:

Y = UΣQ ; ð15Þ

where U is an N×N orthonormal “output” basis set (the eigenvectors
of YYT), Q is a V×V orthonormal “input” basis set (the eigenvectors of
YTY), and Σ is an N×V diagonal matrix of singular values,
conventionally arranged in descending order. By only retaining the
K components with the largest singular values, the neural data can be
approximated by the product of lower-rank matrices. We define the
low-dimensional SVD approximation of Y as the projection of Y onto
the subspace defined by the first K columns of Q (denoted by Q):

Z = Q̃ Q̃ T
� ��1

Q̃ YT
� �T

Q̃ : ð16Þ

Independent components analysis

ICA decomposes the neural data into the product of a sourcematrix
S and a mixing matrix A:

Y = SA; ð17Þ

where the source and mixing matrices are chosen to maximize the
objective function

L S;Að Þ = ∑
N

n=1
∑
V

v=1
logN ynv; snav;σ

2
y

� �
+ Nlog jdetA j : ð18Þ

Maximizing this objective function is equivalent tomaximizing the
entropy of the predicted neural signals—the so-called “infomax”
principle (Bell and Sejnowski, 1995; Cardoso, 2002). We use the
FastICA algorithm of Hyvarinen (2002) to maximize this objective.

Gaussian naive Bayes

GNBmodels the joint distribution of the (reduced) neural data and
covariates as a product of Gaussians:

P X;Zð Þ = 1
K

∏
N

n=1
∏
K

k=1
∑
C

c=1
xncN znk; μck;σ

2
ck

� �
: ð19Þ

We set μ and σ to their maximum likelihood estimates (i.e., the
class-conditional empirical means and variances, respectively). It is
assumed here that the covariates are multi-class with a uniform prior
probability over classes. The version of GNB described here can only
be applied to multi-class covariate data, whereas TLSA is designed to
work with both continuous and discrete covariate data. See Frank et
al. (2000) for extensions of GNB to handle continuous covariate data.

Logistic regression

LR models the conditional distribution of the covariates given the
reduced neural data using a GLM with a softmax link function:

P X jZð Þ = ∏
N

n=1
∑
C

c=1

xncexp ηcz
T
n

h i
∑C

j = 1exp ηjz
T
n

h i ; ð20Þ

where ηc is a 1×K vector of regression coefficients. In the case of
continuous covariates, the softmax link function is replaced by a linear
link function (i.e., linear regression). The regression coefficients can be
estimated via maximum likelihood or maximum a posteriori (MAP)
estimation. For MAP estimation, a common choice of prior on η
(which we adopt here) is a zero-mean Gaussian, which is equivalent
to logistic regression with an L2 penalty (Hastie et al., 2001). We
chose a penalty parameter of 1, which performed well for our
datasets; varying the parameter by an order of magnitude did not
have a significant impact on the results.
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